如何求递推形式的极限?

所谓递推式,就是形如\[x_{n+1}=f(x_n,x_{n-1},\cdots, x_0)\]的函数或序列。遇到这种形式的极限,很多同学就不知道从哪里下手求极限。

其实,要求得这种形式的极限并不难,难的在于,我们经常忘记了最重要的一步,那就是,证明极限是存在的。

我们来看一个例子:
例:设数列\(\{x_n\}\)满足:
\[ 0< x_0 <1, x_{n+1}=x_n(2-x_n),\]
求\(\lim_{n\to \infty}x_n\)。

这里我们看一下这种极限怎么求。假如我们知道这个序列是有极限的,那么,我们知道,\(n\to \infty\)时,\(x_{n+1}\)和\(x_{n}\)都有同样的极限,我们设这个极限为\(A\),那么我们只需要求一个关于\(A\)的一个代数方程,就得到了我们要求的极限。

但这里关键的一步是,我们怎么确定这个序列是有极限的。我们所学的内容里面,有两个极限存在的准则,对这种递推形式的极限,通常能用的是“单调有界数列必有极限”。所以我们要证两件事,一个是序列是单调的,另一个要证明序列是有界的。我们来看看完整的解答过程。

(adsbygoogle = window.adsbygoogle || []).push({});

解:假定序列的极限是存在的,设此极限为\(A\),那么:\[\lim_{n\to\infty}x_{n+1}=A, \lim_{n\to\infty}x_{n}=A, \]

所以
\[A=A(2-A),\]

解此方程,可以得到 \(A^2=A\),那么\(A=1\) 或者 \(0\)。具体是 0 还是 1,我们要看我们的其余的证明过程。

现在我们证明这个序列的极限是存在的。因为\(0<x_0<1\),所以\(x_1=x_0(2-x_0)=2x_0-x_0^2\),配方,我们可以得到\(x_1=1-(1-x_0)^2\),所以 \(0<x_1<1\)。又因为 \(x_0<1\),所以 \(2-x_0>1\),所以 \(x_1=x_0(2-x_0)>x_0\)。我们用归纳法来证明,\(0<x_n<1\) 并且是单调增加的。根据极限存在准则II:单调有界数列必有极限。我们知道这个数列有极限。

现在假设\(0<x_n<1\),那么,\(0<x_{n+1}=x_n(2-x_n)<1\),跟上述证明一样,\(x_{n+1}>x_n\),所以序列是单调增加的。

所以,\(\lim_{n\to\infty}x_n=1\)。(\(A=0\) 舍去,因为 \(x_n>0\))


评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注