所谓的对数求导法,就是先对函数 \(y=f(x)\) 取对数 \(\ln y=ln f(x)\),然后应用函数求导法则,两边对 \(x\) 求导
\[\frac{1}{y}y’=\frac{f(x)}{f'(x)},\]
从而求出 \(y’\) 的方法。
这种方法主要应用于下列两种情况:
1,函数是幂指函数 \(y=h(x)^{g(x)}\) 的情形。例如
\[y=\sin x ^{\ln x}\]
两边取对数,我们得到
\[\ln y=\ln(\sin x ^{\ln x})。\]
根据对数的运算法则,上式等于
\[\ln y= \ln x \ln(\sin x).\]
两边对 \(x\) 求导,将 \(y\) 看成是 \(x\) 的函数,我们得到
\[\begin{align*}\frac{1}{y}y’&=\frac{1}{x}\ln(\sin x)+\ln x \frac{\cos x}{\sin x}\\
&=\frac{\ln(\sin x)}{x}+\ln x\tan x
\end{align*}.\]
所以
\[\begin{align*}
y’&=y\left(\frac{\ln(\sin x)}{x}+\ln x\tan x\right)\\
&=\sin x ^{\ln x}\left(\frac{\ln(\sin x)}{x}+\ln x\tan x\right)
\end{align*}\]
2,函数混合了多重乘、除法及根式,例如
\[y=\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}.\]
这样的函数,不管是用乘法规则(product rule)还是除法规则(quotient rule),都是非常头疼的事。但是用对数求导法则,就简单多了。因为对数函数有几个非常好用的运算法则,就是乘法变成加法,除法变成减法,指数可以提到对数符号前面来。
我们对上面的函数两边取对数,得到
\[\ln y =\ln \left(\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}\right)\]
因为根式可以写成指数的形式,例如 \(\sqrt[3]{7x^2+1}=(7x^2+1)^{\frac{1}{3}}\),所以根据对数的运算法则,上式变成
\[\ln y=\frac{1}{3}\ln(7x^2+1)+\frac{1}{5}\ln(2x-3)-\frac{1}{2}\ln(x^2+5)-\frac{1}{4}\ln(3x-2)\]
两边关于 \(x\) 求导,我们得到
\[\frac{y’}{y}=\frac{1}{3}\frac{14x}{7x^2+1}+\frac{1}{5}\frac{2}{2x-3}-\frac{1}{2}\frac{2x}{x^2+5}-\frac{1}{4}\frac{3}{3x-2}\]
两边同乘以 \(y\),然后将 \(y\) 的表达式代入,就得到了
\[y’=\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}\left(\frac{1}{3}\frac{14x}{7x^2+1}+\frac{1}{5}\frac{2}{2x-3}-\frac{1}{2}\frac{2x}{x^2+5}-\frac{1}{4}\frac{3}{3x-2
}\right)\]
发表回复