函数展开成幂级数的方法总结

函数展开成幂级数的一般方法是;

  1. 直接展开;对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。
  2. 通过变量代换来利用已知的函数展开式;例如 \(\sin2x\) 的展开式就可以通过将 \(\sin x \) 的展开式里的 \(x\) 全部换成 \(2x\) 而得到。我们已知 \(\displaystyle\sin x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}, \forall x\in R\), 从而 \(\displaystyle\sin2x=\sum_{n=0}^{\infty}(-1)^n\frac{(2x)^{2n+1}}{(2n+1)!}, \forall x\in R\).
  3. 通过变形来利用已知的函数展开式;例如要将 \(\displaystyle \frac{1}{1+x}\) 展开成 \(x-1\) 的幂级数,我们就可以将函数写成 \(x-1\) 的函数,然后利用 \(\displaystyle \frac{1}{1+x}\) 的幂级数展开式。\(\displaystyle \frac{1}{1+x}=\frac{1}{2+(x-1)}=\frac{1}{2}\cdot\frac{1}{1+\frac{x-1}{2}}\),而 \(\displaystyle\frac{1}{1+\frac{x-1}{2}}=\sum_{n=0}^{\infty}(-1)^n(\frac{x-1}{2})^n\),从而 \(\displaystyle \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^n\frac{(x-1)^n}{2^{n+1}}\)
  4. 通过逐项求导、逐项积分已知的函数展开式;例如 \(\displaystyle \cosh x= (\sinh x)’\),它的幂级数展开式就可以通过将\(\sinh x\) 的展开式逐项求导得到。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要我们确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。
  5. 利用级数的四则运算。例如 \(\displaystyle\sinh x= \frac{e^x-e^{-x}}{2}\),而 \(\displaystyle e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}, e^{-x}=\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{n!}\),所以 \(\displaystyle\sinh x=\frac{1}{2}\sum_{n=0}^{\infty}\frac{x^n}{n!}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{n!}=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{(2n-1)!}, \forall x\in R\)

几个常用的已知函数的展开式:

  1. \(\displaystyle\sin x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}, \forall x\in R\)
  2. \(\displaystyle\cos x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}, \forall x\in R\)
  3. \(\displaystyle e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}, \forall x\in R\)
  4. \(\displaystyle\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n, \forall x\in (-1,1)\)
  5. \(\displaystyle\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n, \forall x\in (-1,1) \)
  6. \(\displaystyle\ln(1-x)=\sum_{n=0}^{\infty}\frac{x^n}{n}, \forall x\in (-1,1]\)
  7. \(\displaystyle\ln(1+x)=\sum_{n=0}^{\infty}\frac{(-1)^{n-1}}{n}x^n, \forall x\in (-1,1]\)

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注