级数判敛方法总结

级数判敛的方法众多,总结起来就有比较判别法,比较判别法的极限形式,比值判别法,根值判别法,极限判别法,积分判别法,交错级数判敛法以及一个级数收敛的必要条件。对于一个具体的级数,应该应用哪一种方法最有效,这就是一个头疼的问题。我们不可能一个方法一个方法的来试,那样就太浪费时间了。这里我们总结一下一般的原则。

判定一个级数是否收敛的关键,在于迅速确定级数的形式。不同的形式有着不同的有效判别方法。现在我们总结一下,哪些形式应用哪些判别法则。

  1. 如果一眼能看出一般项的极限不趋于 \(0\),即 \(\lim_{n\to\infty}a_n\ne 0\),则级数发散;
  2. 如果级数具有形式 \(\sum 1/n^p\),那么就是一个 \(p-\) 级数。当 \(p\le1\) 时发散,当 \(p>1\) 时收敛;
  3. 如果级数具有形式 \(\sum a r^n\), 那么就是一个几何级数。当 \(|r|\ge1\) 时发散,当 \(|r|<1\) 时收敛;

这两种级数是最基本的级数,后面的几种判别法,差不多都是跟这两种级数做比较而得到的。

  1. 如果级数的一般项是 \(n\) 的一个代数式(有理分式或者无理分式),那么该级数与某个 \(p-\)级数同敛散(极限判别法或者比较判别法的极限形式)。我们只需要在分式中保留关于 \(n\) 的最高阶项,所得到的项就是这个 \(p-\) 级数的一般项。例如,级数 \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2+n+1}\),它的一般项 \(\displaystyle\frac{1}{n^2+n+1}\sim \frac{1}{n^2}\),所以它与级数 \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}\) 同敛散。在这里,我们将级数的一般项关于 \(n\) 的最高阶项保留,就得到 \(1/n^2\),所以级数 \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}\) 就是我们要寻找的那个比较级数 。再如 \(\displaystyle\frac{1}{\sqrt{n^2+1}}\sim \frac{1}{n}, (n\to \infty)\),所以级数 \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^2+1}}\) 发散;
  2. 或者,简单地说,就是如果一个级数的一般项等价于一个 \(p-\) 级数的一般项,则级数与该 \(p-\) 级数同敛散;
  3. 同上,如果一个级数的一般项等价于一个几何级数的一般项,则级数与该几何级数同敛散;
  4. 如果级数含有 \(n!\) ,则比值判别法比较有效。 需要注意的是,比值判别法对 \(p-\) 级数失效,因而对任何级数一般项 \(n\) 的代数式的级数也失效;
  5. 如果级数的一般项 \(a_n=(b_n)^n\), 则首先考虑根值判别法;
  6. 如果级数的一般项是 \(n\) 的函数 \(f(n)\) 并且广义积分 \(\int_1^{\infty}f(x)dx\) 较易求得,则可考虑使用积分判别法。
  7. 如果级数含有项 \((-1)^n\),则是一个交错级数,这时候,必定考虑莱不尼兹判别法(交错级数判别法)。

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注