如何用配方法将不含平方项的二次型化成标准形?

一般情况下,我们使用配方法化二次型为标准形的时候,用的是完全平方公式 \((a+b)^2=a^2+2ab+b^2\),如果多项式里有 \(a^2+2ab\),那么我们可以通过加一项 \(b^2\) 再减一项 \(b^2\) 的方法达到将这两项化成只剩下平方项的目的。也就是说

\[a^2+2ab=a^2+2ab+b^2-b^2=( a^2+2ab+b^2 )-b^2=(a+b)^2-b^2\]

这样,就只剩下两个平方项了。只要令 \(x=(a+b),y=b\),上式就可以变成\(x^2-y^2\),就是一个标准的二次型。

但是有些二次型,没有平方项,只有混合项,那么这个方法就不可以用了。那么怎么办呢?这个时候我们可以利用平方差公式,\((a+b)(a-b)=a^2-b^2\)将混合项化成标准形。例如,只有一项 \(x_1x_2\),那么令 \(x_1=y_1+y_2, x_2=y_1-y_2\),那么 \(x_1x_2=(y_1+y_2)(y_1-y_2)=y_1^2-y_2^2\)。这就是将不含平方项的二次型化成标准形的方法。

我们来看一个例子:用配方法将二次型

\[f(x_1,x_2,x_3)=x_1x_2+x_1x_3+x_2x_3\]化成标准形。

解:令 \(x_1=y_1+y_2, x_2=x_1-y_2, x_3=y_3\),则

\[ \begin{align*}f=x_1x_2+x_1x_3+x_2x_3 &=(y_1+y_2)(y_1-y_2)+(y_1+y_2)y_3+(y_1-y_2)y_3\\ &=y_1^2-y_2^2+2y_1y_3\end{align*}\]

再对 \(y_1,y_3\) 进行配方,因为 \(y_1^2+2y_1y_3=(y_1+y^3)^2-y_3^2\),所以只要令 \(z_1=y_1+y_3, z_2=y_2, z_3=y_3\),则二次型变成\[f=z_1^2-z_2^2-z_3^2\]


评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注