我们求解非齐次偏微分方程时,如果边界条件是齐次的,一般的求解方法是采用特征函数展开法来求解。这种方法就是根据边界条件的类型,将未知函数、初始条件及非齐次项都展开成特征函数的级数形式,其系数待定。将这些函数的级数形式都代入方程,求出待定系数,从而求出未知函数的方法。本文不详细介绍这种方法,详细的介绍我留到下一篇文章。
如果非齐次项与时间 t 无关,我们也可以采用特征函数展开的方式来求解,但是我们有更有效的方法来求解。这种方法,我们先求出一个稳态解(对 t 的导数都为 \(0\),或者不含时间 t 的导数的方程),利用叠加原理,剩下的部分就是求解一个带齐次边界条件的齐次方程,这个我们在上一篇文章里已经介绍过了。
我们还是以热传导方程为例来说明这种方法,当然这种方法同样适用于波动方程。
例:用分离变量法求解初边值问题:
\[\begin{cases}u_t=\alpha^2u_{xx}+x, \qquad & 0<x<L\\ u(0,t)=0,& u(L,t)=0\\ u(x,0)=g(x)\end{cases}\]
我们看到非齐次项 \(f(x,t)=x\),只跟空间变量有关,与时间 \(t\) 无关。这时,我们只要设 \(u=u_{\infty}+v\),其中 \(u_{\infty}(x)\) 满足
\[\begin{cases}0=\alpha^2u_{\infty}^{\prime\prime}+x, \qquad & 0<x<L\\ u_{\infty}(0,t)=0,& u_{\infty}(L,t)=0\end{cases}\]
这是一个二阶常微分方程,我们只需要求两次积分就可以求出它的解了。
\[u_{\infty}^{\prime\prime}=-\frac{x}{\alpha^2}, \qquad u_{\infty}=-\frac{x^3}{6\alpha^2}+Ax+B\]
代入边界条件, 我们得到
\[B=0, A=\frac{L^2}{6\alpha^2}, \Longrightarrow u_{\infty}= -\frac{x^3}{6\alpha^2} + \frac{L^2x}{6\alpha^2} \]
将它的表达式代入方程 \(u=u_{\infty}+v\), \(v=u-u_{\infty}\),从而我们得到关于 \(v\) 的方程
\[ \begin{cases}v_t=\alpha^2u_{xx}, \qquad & 0<x<L\\ v(0,t)=0,& v(L,t)=0\\ v(x,0)=g(x)+ \frac{x^3}{6\alpha^2} – \frac{L^2x}{6\alpha^2} \end{cases} \]
那么 \(v\) 的求解跟之前讲的齐次方程,齐次边界的情形一样。使用分离变量法,注意到边界条件是狄利可雷边界条件,我们可以求得
\[v=\sum_{n=1}^{\infty}a_ne^{-(\frac{n\pi}{L})^2}\sin \frac{n\pi x}{L}\]
其中\[a_{n}=\frac{2}{L}\int_{0}^{\pi}( g(x)+ \frac{x^3}{6\alpha^2} – \frac{L^2x}{6\alpha^2} )dx\]
所以,方程的解为
\[u= -\frac{x^3}{6\alpha^2} + \frac{L^2x}{6\alpha^2} + \sum_{n=1}^{\infty}a_ne^{-(\frac{n\pi}{L})^2}\sin \frac{n\pi x}{L} \]
发表回复