如今网络兴起各种各样的盘点,我也来赶一下时髦,盘点一下数学里的各种相关的概念。这一篇我们来盘点一下大学数学之后的各种收敛性的概念。当然我们主要侧重于大学阶段的内容,研究生阶段的概念我们不多涉及。
大学数学从微积分开始,就会遇到各种各样的收敛性概念,例如逐点收敛与一致收敛,条件收敛与绝对收敛,强收敛与弱收敛,还有依距离收敛,依范数收敛,依概率收敛,依测度收敛等等等等。我们来简单地叙述这些概念。
1,收敛,意思就是极限存在。函数极限的直观定义是:当 \(x\) 无限趋近于 \(a\) 时,函数 \(f(x)\) 无限接近于常数 \(A\),我们就说 \(A\) 是函数 \(f(x)\) 当 \(x\to a\) 时的极限。或者说当 \(x\) 趋近于 \(a\) 时,函数 \(f(x)\) 的极限是 \(A\) 或者函数 \(f(x)\) 收敛于 \(A\)。
自从柯西给出了极限的严格定义后,极限的定义都采用了 \(\epsilon-\delta \) 语言来定义:
对所有的 \(\epsilon>0\),存在 \(\delta>0\),使得当 \(0<|x-a|<\delta\) 时, \(|f(x)-A|<\epsilon\) 成立,我们称当 \(x\) 趋于 \(a\) 时, \(f(x)\) 收敛于 \(A\)。记为
\[\lim_{x\to a}f(x)=A\]
之后基本上所有的收敛性概念都有类似于这样的叙述。
2,绝对收敛和条件收敛主要是针对级数而言。若极限
\[\lim_{n \to \infty}\sum_{i=1}^n|a_n|\]
存在,或者说绝对值级数 \(\displaystyle\sum_{n=1}^{\infty}|a_n|\) 收敛,我们就说级数 \(\displaystyle\sum_{n=1}^{\infty}a_n\) 绝对收敛。
若\(\displaystyle\sum_{n=1}^{\infty}|a_n|\) 发散,而 \(\displaystyle\sum_{n=1}^{\infty}a_n\) 收敛,我们就说级数 \(\displaystyle\sum_{n=1}^{\infty}a_n\) 条件收敛。
所谓发散,就是极限不存在。这是跟收敛相对的概念。
3,逐点收敛与一致收敛。这主要是对于函数列或者函数项级数而言。因为任何一个函数项级数都与一个函数列相对应,我们只对于函数列来叙述这两概念。
跟绝对收敛与条件收敛不同,逐点收敛与一致收敛之间的判断要困难得到多,也精细许多。绝对收敛是绝对值级数收敛,条件收敛是绝对值级数发散但本身收敛。
逐点收敛,是指对于任何一个 \(x\),函数列
\[\lim_{n\to\infty}f_n(x)=f(x)\]
这里的 \(x\) 固定,极限过程是 \(n\to \infty\)。也就是每次在 \(x\) 固定的时候,\(f_n(x)\) 的极限都是 \(f(x)\)。
但是要区分逐点收敛与一致收敛,这样的定义还不够,我们需要使用 \(\epsilon-\delta\) 语言。
我们来给出逐点收敛和一致收敛的严格定义。
逐点收敛:对所有的 \(x\in D\) (\(D\) 是函数列 \(\{f_n(x)\}_{n=1}^{\infty}\)的定义域),对任意给定的 \(\epsilon>0\),存在 \(N(x,\epsilon)>0\),当 \(n>N(x,\epsilon)\) 时, \(|f_n(x)-f(x)|<\epsilon\) 成立,我们就说函数列 \(\{f_n(x)\}_{n=1}^{\infty}\) 逐点收敛于 \(f(x)\)。
注意到这里 \(N\) 依赖于 \(x\) 和 \(\epsilon\),也就是说,不同 \(x\),\(N\) 可能取不同的值,相差也许很大。
但一致收敛不一样,
一致收敛:对所有的 \(x\in D\) ,对于任意给定的 \(\epsilon>0\),存在 \(N(\epsilon)>0\),当 \(n>N(\epsilon)\) 时, \(|f_n(x)-f(x)|<\epsilon\) 成立,我们就说函数列 \(\{f_n(x)\}_{n=1}^{\infty}\) 一致收敛于 \(f(x)\)。
这里显然的区别就是,一致收敛的 \(N\),不依赖于 \(x\) 的位置,就是不管 \(x\) 在什么地方,都可以用同一个 \(N\) 来确定。
这里我不举例来说明了,任何一本数学分析的教材应该都有详细的例子。
一致收敛一定逐点收敛,逐点收敛不一定一致收敛。也就是说,一致收敛的条件要更强,而逐点收敛的条件要更弱。
4,强收敛、弱收敛与弱*收敛。
强收敛与弱收敛是泛函分析中的概念。
强收敛:在赋范空间中,如果 \[\lim_{n\to\infty}\|x_n-x\|=0\]我们称点列 \(\{x_n\}\) 强收敛于 \(x\),这里 \(\|\cdot\|\) 的赋范空间的范数。强收敛也称为依范数收敛。
也就是说,强收敛是在范数的意义下的收敛。
弱收敛:如果对于任意的 \(f\in X^*\),有 \[\lim_{n\to\infty }\|f(x_n)-f(x)\|=0\]我们称点列 \(\{x_n\}\in X\) 弱收敛于 \(x\)。这里 \(X^*\) 是赋范空间 \(X\) 的对偶空间,就是由 \(X\) 上的所有泛函所组成的赋范空间。
所谓泛函,简单地说,就是函数的函数。它的定义域是线性空间,值域是数。就是将线性空间中的每一个元素变成一个数。泛函是算子的一种特殊形式,这个概念我们另外发文说明。
弱*收敛:将弱收敛反过来看,就是弱*收敛。
如果对于任意的 \(x\in X\),有 \[\lim_{n\to\infty }\|f_n(x)-f(x)\|=0\]我们称点列 \(\{f_n\}\in X^*\) 弱*收敛于 \(f\)。
强收敛一定弱收敛,弱收敛不一定强收敛。弱收敛与弱*收敛可能一致,可能不一致,也没有谁更强,谁更弱。如果 \(X\) 是自反空间,那么弱收敛与弱*收敛是一致的。
所谓自反空间,就是 \(X**=X\),也就是说,\(X\) 是它的对偶空间 \(X*\) 的对偶空间。希尔伯特空间都是对偶空间。
5,依距离收敛:若距离空间 \(X,d\) 中的点列 \(\{x_n\}\) 满足
\[\lim_{n\to\infty}d(x_n,x)=0\]
我们就说 \(\{x_n\}\) 依距离收敛于 \(x\),或者直接说 \(x_n\) 收敛于 \(x\)。因为所有的收敛概念,都是在某种距离的意义下的收敛。或者说,有了距离的概念,才有了收敛的概念。
6,依范数收敛:就是依赋范空间的范数收敛
点列:\[\lim_{n\to\infty}\|x_n-x\|=0\]称 \(x_n\in X\) 依范数收敛于 \(x\in X\)。它与点列的强收敛是同一个意思。
泛函:\[\lim_{n\to\infty}\|f_n-f\|=0\]称 \(f_n\in X*\) 依范数收敛于 \(f\in X*\)。它是对偶空间里的强收敛。
算子:\[\lim_{n\to\infty}\|T_n-T\|=0\]称 \(T_n\in B(X,Y)\) 依范数收敛于 \(x\in B(X,Y)\)。其中 \(B(X,Y)\) 是 \(X\) 到 \(Y\) 的所有算子所组成的赋范空间。
需要注意的是,算子的依范数收敛,也称为算子的一致收敛。
算子的强收敛是指对任意 \(x\in X\),\[\lim_{n\to\infty}\|T_n(x)-T(x)\|=0\] 所以对于强收敛或者一致收敛,我们要指明是哪个空间上的收敛。
7,依测度收敛与依概率收敛:
依测度收敛与几乎处处收敛是实变函数、实分析或者测试论里的概念。依概率收敛是概率论里的概念。但事实上,它们的定义几乎就是一样的。
依测度收敛:我们说一个可测函数列 \(f_n\in X\) 依测度收敛于 \(f\in X\) 是指对于任意的 \(\epsilon>0\) \[\lim_{n\to\infty}\mu(\{x:|f_n(x)-f(x)|\geq \epsilon\})=0\]
这里 \(\mu\) 是定义在 \(X\) 上的一个测度。
依概率收敛:如果对于任意对于任意的 \(\epsilon>0\),随机变量序列 \(X_n\) 满足
\[\lim_{n\to\infty}P(|X_n-X|\geq \epsilon)=0\]
我们称随机变量序列 \(X_n\) 依概率收敛于随机变量 \(X\)。
如果将概率看成测度,那么依概率收敛就是一种依测度收敛。
8,几乎处处收敛:
这是实变函数或者实分析中的概念。“几乎处处”是指除去一个零测集外,每一个点处满足的概念。
我们说一个函数列 \(\{f_n\}\) 几乎处处收敛于 \(f\),是指
\[\mu(\{x:\lim_{n\to \infty}(f_n(x)-f(x))\ne 0\})=0\]
换句话说,就是函数列 \(f_n\) 不收敛于 \(f\) 的所有的点的集合,测度为 \(0\)。
9,结语:一般来说,分析学各课程,都少不了各种各样的收敛概念,因为收敛性这一概念是分析学科的基础。有了这些基础,才能更一步理解后续的内容。
发表回复